Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Am Med Inform Assoc ; 30(7): 1305-1312, 2023 06 20.
Article in English | MEDLINE | ID: covidwho-2325541

ABSTRACT

Machine learning (ML)-driven computable phenotypes are among the most challenging to share and reproduce. Despite this difficulty, the urgent public health considerations around Long COVID make it especially important to ensure the rigor and reproducibility of Long COVID phenotyping algorithms such that they can be made available to a broad audience of researchers. As part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative, researchers with the National COVID Cohort Collaborative (N3C) devised and trained an ML-based phenotype to identify patients highly probable to have Long COVID. Supported by RECOVER, N3C and NIH's All of Us study partnered to reproduce the output of N3C's trained model in the All of Us data enclave, demonstrating model extensibility in multiple environments. This case study in ML-based phenotype reuse illustrates how open-source software best practices and cross-site collaboration can de-black-box phenotyping algorithms, prevent unnecessary rework, and promote open science in informatics.


Subject(s)
Boxing , COVID-19 , Population Health , Humans , Electronic Health Records , Post-Acute COVID-19 Syndrome , Reproducibility of Results , Machine Learning , Phenotype
2.
Nat Commun ; 14(1): 2914, 2023 05 22.
Article in English | MEDLINE | ID: covidwho-2322120

ABSTRACT

Long COVID, or complications arising from COVID-19 weeks after infection, has become a central concern for public health experts. The United States National Institutes of Health founded the RECOVER initiative to better understand long COVID. We used electronic health records available through the National COVID Cohort Collaborative to characterize the association between SARS-CoV-2 vaccination and long COVID diagnosis. Among patients with a COVID-19 infection between August 1, 2021 and January 31, 2022, we defined two cohorts using distinct definitions of long COVID-a clinical diagnosis (n = 47,404) or a previously described computational phenotype (n = 198,514)-to compare unvaccinated individuals to those with a complete vaccine series prior to infection. Evidence of long COVID was monitored through June or July of 2022, depending on patients' data availability. We found that vaccination was consistently associated with lower odds and rates of long COVID clinical diagnosis and high-confidence computationally derived diagnosis after adjusting for sex, demographics, and medical history.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , SARS-CoV-2 , Vaccination
3.
BMC Med Res Methodol ; 23(1): 46, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2281390

ABSTRACT

BACKGROUND: Multi-institution electronic health records (EHR) are a rich source of real world data (RWD) for generating real world evidence (RWE) regarding the utilization, benefits and harms of medical interventions. They provide access to clinical data from large pooled patient populations in addition to laboratory measurements unavailable in insurance claims-based data. However, secondary use of these data for research requires specialized knowledge and careful evaluation of data quality and completeness. We discuss data quality assessments undertaken during the conduct of prep-to-research, focusing on the investigation of treatment safety and effectiveness. METHODS: Using the National COVID Cohort Collaborative (N3C) enclave, we defined a patient population using criteria typical in non-interventional inpatient drug effectiveness studies. We present the challenges encountered when constructing this dataset, beginning with an examination of data quality across data partners. We then discuss the methods and best practices used to operationalize several important study elements: exposure to treatment, baseline health comorbidities, and key outcomes of interest. RESULTS: We share our experiences and lessons learned when working with heterogeneous EHR data from over 65 healthcare institutions and 4 common data models. We discuss six key areas of data variability and quality. (1) The specific EHR data elements captured from a site can vary depending on source data model and practice. (2) Data missingness remains a significant issue. (3) Drug exposures can be recorded at different levels and may not contain route of administration or dosage information. (4) Reconstruction of continuous drug exposure intervals may not always be possible. (5) EHR discontinuity is a major concern for capturing history of prior treatment and comorbidities. Lastly, (6) access to EHR data alone limits the potential outcomes which can be used in studies. CONCLUSIONS: The creation of large scale centralized multi-site EHR databases such as N3C enables a wide range of research aimed at better understanding treatments and health impacts of many conditions including COVID-19. As with all observational research, it is important that research teams engage with appropriate domain experts to understand the data in order to define research questions that are both clinically important and feasible to address using these real world data.


Subject(s)
COVID-19 , Humans , Data Accuracy , COVID-19 Drug Treatment , Data Collection
4.
Lancet Digit Health ; 4(7): e532-e541, 2022 07.
Article in English | MEDLINE | ID: covidwho-1852294

ABSTRACT

BACKGROUND: Post-acute sequelae of SARS-CoV-2 infection, known as long COVID, have severely affected recovery from the COVID-19 pandemic for patients and society alike. Long COVID is characterised by evolving, heterogeneous symptoms, making it challenging to derive an unambiguous definition. Studies of electronic health records are a crucial element of the US National Institutes of Health's RECOVER Initiative, which is addressing the urgent need to understand long COVID, identify treatments, and accurately identify who has it-the latter is the aim of this study. METHODS: Using the National COVID Cohort Collaborative's (N3C) electronic health record repository, we developed XGBoost machine learning models to identify potential patients with long COVID. We defined our base population (n=1 793 604) as any non-deceased adult patient (age ≥18 years) with either an International Classification of Diseases-10-Clinical Modification COVID-19 diagnosis code (U07.1) from an inpatient or emergency visit, or a positive SARS-CoV-2 PCR or antigen test, and for whom at least 90 days have passed since COVID-19 index date. We examined demographics, health-care utilisation, diagnoses, and medications for 97 995 adults with COVID-19. We used data on these features and 597 patients from a long COVID clinic to train three machine learning models to identify potential long COVID among all patients with COVID-19, patients hospitalised with COVID-19, and patients who had COVID-19 but were not hospitalised. Feature importance was determined via Shapley values. We further validated the models on data from a fourth site. FINDINGS: Our models identified, with high accuracy, patients who potentially have long COVID, achieving areas under the receiver operator characteristic curve of 0·92 (all patients), 0·90 (hospitalised), and 0·85 (non-hospitalised). Important features, as defined by Shapley values, include rate of health-care utilisation, patient age, dyspnoea, and other diagnosis and medication information available within the electronic health record. INTERPRETATION: Patients identified by our models as potentially having long COVID can be interpreted as patients warranting care at a specialty clinic for long COVID, which is an essential proxy for long COVID diagnosis as its definition continues to evolve. We also achieve the urgent goal of identifying potential long COVID in patients for clinical trials. As more data sources are identified, our models can be retrained and tuned based on the needs of individual studies. FUNDING: US National Institutes of Health and National Center for Advancing Translational Sciences through the RECOVER Initiative.


Subject(s)
COVID-19 , Adolescent , Adult , COVID-19/complications , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Machine Learning , Pandemics , SARS-CoV-2 , United States/epidemiology , Post-Acute COVID-19 Syndrome
5.
J Am Med Inform Assoc ; 29(7): 1172-1182, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1795238

ABSTRACT

OBJECTIVE: The goals of this study were to harmonize data from electronic health records (EHRs) into common units, and impute units that were missing. MATERIALS AND METHODS: The National COVID Cohort Collaborative (N3C) table of laboratory measurement data-over 3.1 billion patient records and over 19 000 unique measurement concepts in the Observational Medical Outcomes Partnership (OMOP) common-data-model format from 55 data partners. We grouped ontologically similar OMOP concepts together for 52 variables relevant to COVID-19 research, and developed a unit-harmonization pipeline comprised of (1) selecting a canonical unit for each measurement variable, (2) arriving at a formula for conversion, (3) obtaining clinical review of each formula, (4) applying the formula to convert data values in each unit into the target canonical unit, and (5) removing any harmonized value that fell outside of accepted value ranges for the variable. For data with missing units for all the results within a lab test for a data partner, we compared values with pooled values of all data partners, using the Kolmogorov-Smirnov test. RESULTS: Of the concepts without missing values, we harmonized 88.1% of the values, and imputed units for 78.2% of records where units were absent (41% of contributors' records lacked units). DISCUSSION: The harmonization and inference methods developed herein can serve as a resource for initiatives aiming to extract insight from heterogeneous EHR collections. Unique properties of centralized data are harnessed to enable unit inference. CONCLUSION: The pipeline we developed for the pooled N3C data enables use of measurements that would otherwise be unavailable for analysis.


Subject(s)
COVID-19 , Electronic Health Records , Cohort Studies , Data Collection , Humans
6.
JAMA Netw Open ; 5(2): e2143151, 2022 02 01.
Article in English | MEDLINE | ID: covidwho-1669321

ABSTRACT

Importance: Understanding of SARS-CoV-2 infection in US children has been limited by the lack of large, multicenter studies with granular data. Objective: To examine the characteristics, changes over time, outcomes, and severity risk factors of children with SARS-CoV-2 within the National COVID Cohort Collaborative (N3C). Design, Setting, and Participants: A prospective cohort study of encounters with end dates before September 24, 2021, was conducted at 56 N3C facilities throughout the US. Participants included children younger than 19 years at initial SARS-CoV-2 testing. Main Outcomes and Measures: Case incidence and severity over time, demographic and comorbidity severity risk factors, vital sign and laboratory trajectories, clinical outcomes, and acute COVID-19 vs multisystem inflammatory syndrome in children (MIS-C), and Delta vs pre-Delta variant differences for children with SARS-CoV-2. Results: A total of 1 068 410 children were tested for SARS-CoV-2 and 167 262 test results (15.6%) were positive (82 882 [49.6%] girls; median age, 11.9 [IQR, 6.0-16.1] years). Among the 10 245 children (6.1%) who were hospitalized, 1423 (13.9%) met the criteria for severe disease: mechanical ventilation (796 [7.8%]), vasopressor-inotropic support (868 [8.5%]), extracorporeal membrane oxygenation (42 [0.4%]), or death (131 [1.3%]). Male sex (odds ratio [OR], 1.37; 95% CI, 1.21-1.56), Black/African American race (OR, 1.25; 95% CI, 1.06-1.47), obesity (OR, 1.19; 95% CI, 1.01-1.41), and several pediatric complex chronic condition (PCCC) subcategories were associated with higher severity disease. Vital signs and many laboratory test values from the day of admission were predictive of peak disease severity. Variables associated with increased odds for MIS-C vs acute COVID-19 included male sex (OR, 1.59; 95% CI, 1.33-1.90), Black/African American race (OR, 1.44; 95% CI, 1.17-1.77), younger than 12 years (OR, 1.81; 95% CI, 1.51-2.18), obesity (OR, 1.76; 95% CI, 1.40-2.22), and not having a pediatric complex chronic condition (OR, 0.72; 95% CI, 0.65-0.80). The children with MIS-C had a more inflammatory laboratory profile and severe clinical phenotype, with higher rates of invasive ventilation (117 of 707 [16.5%] vs 514 of 8241 [6.2%]; P < .001) and need for vasoactive-inotropic support (191 of 707 [27.0%] vs 426 of 8241 [5.2%]; P < .001) compared with those who had acute COVID-19. Comparing children during the Delta vs pre-Delta eras, there was no significant change in hospitalization rate (1738 [6.0%] vs 8507 [6.2%]; P = .18) and lower odds for severe disease (179 [10.3%] vs 1242 [14.6%]) (decreased by a factor of 0.67; 95% CI, 0.57-0.79; P < .001). Conclusions and Relevance: In this cohort study of US children with SARS-CoV-2, there were observed differences in demographic characteristics, preexisting comorbidities, and initial vital sign and laboratory values between severity subgroups. Taken together, these results suggest that early identification of children likely to progress to severe disease could be achieved using readily available data elements from the day of admission. Further work is needed to translate this knowledge into improved outcomes.


Subject(s)
COVID-19/epidemiology , Adolescent , Age Distribution , COVID-19/complications , COVID-19/diagnosis , COVID-19/therapy , COVID-19/virology , Child , Child, Preschool , Comorbidity , Disease Progression , Early Diagnosis , Female , Humans , Infant , Male , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Sociodemographic Factors , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/therapy , Systemic Inflammatory Response Syndrome/virology , United States/epidemiology , Vital Signs
7.
J Am Med Inform Assoc ; 29(4): 609-618, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1443051

ABSTRACT

OBJECTIVE: In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. MATERIALS AND METHODS: We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using 4 federated Common Data Models. N3C data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. RESULTS: Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source Common Data Model conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness, and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. DISCUSSION: We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for DQ improvement that will support improved research analytics locally and in aggregate. CONCLUSION: By combining rapid, continual assessment of DQ with a large volume of multisite data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.


Subject(s)
COVID-19 , Cohort Studies , Data Accuracy , Health Insurance Portability and Accountability Act , Humans , United States
8.
JAMA Netw Open ; 4(7): e2116901, 2021 07 01.
Article in English | MEDLINE | ID: covidwho-1306627

ABSTRACT

Importance: The National COVID Cohort Collaborative (N3C) is a centralized, harmonized, high-granularity electronic health record repository that is the largest, most representative COVID-19 cohort to date. This multicenter data set can support robust evidence-based development of predictive and diagnostic tools and inform clinical care and policy. Objectives: To evaluate COVID-19 severity and risk factors over time and assess the use of machine learning to predict clinical severity. Design, Setting, and Participants: In a retrospective cohort study of 1 926 526 US adults with SARS-CoV-2 infection (polymerase chain reaction >99% or antigen <1%) and adult patients without SARS-CoV-2 infection who served as controls from 34 medical centers nationwide between January 1, 2020, and December 7, 2020, patients were stratified using a World Health Organization COVID-19 severity scale and demographic characteristics. Differences between groups over time were evaluated using multivariable logistic regression. Random forest and XGBoost models were used to predict severe clinical course (death, discharge to hospice, invasive ventilatory support, or extracorporeal membrane oxygenation). Main Outcomes and Measures: Patient demographic characteristics and COVID-19 severity using the World Health Organization COVID-19 severity scale and differences between groups over time using multivariable logistic regression. Results: The cohort included 174 568 adults who tested positive for SARS-CoV-2 (mean [SD] age, 44.4 [18.6] years; 53.2% female) and 1 133 848 adult controls who tested negative for SARS-CoV-2 (mean [SD] age, 49.5 [19.2] years; 57.1% female). Of the 174 568 adults with SARS-CoV-2, 32 472 (18.6%) were hospitalized, and 6565 (20.2%) of those had a severe clinical course (invasive ventilatory support, extracorporeal membrane oxygenation, death, or discharge to hospice). Of the hospitalized patients, mortality was 11.6% overall and decreased from 16.4% in March to April 2020 to 8.6% in September to October 2020 (P = .002 for monthly trend). Using 64 inputs available on the first hospital day, this study predicted a severe clinical course using random forest and XGBoost models (area under the receiver operating curve = 0.87 for both) that were stable over time. The factor most strongly associated with clinical severity was pH; this result was consistent across machine learning methods. In a separate multivariable logistic regression model built for inference, age (odds ratio [OR], 1.03 per year; 95% CI, 1.03-1.04), male sex (OR, 1.60; 95% CI, 1.51-1.69), liver disease (OR, 1.20; 95% CI, 1.08-1.34), dementia (OR, 1.26; 95% CI, 1.13-1.41), African American (OR, 1.12; 95% CI, 1.05-1.20) and Asian (OR, 1.33; 95% CI, 1.12-1.57) race, and obesity (OR, 1.36; 95% CI, 1.27-1.46) were independently associated with higher clinical severity. Conclusions and Relevance: This cohort study found that COVID-19 mortality decreased over time during 2020 and that patient demographic characteristics and comorbidities were associated with higher clinical severity. The machine learning models accurately predicted ultimate clinical severity using commonly collected clinical data from the first 24 hours of a hospital admission.


Subject(s)
COVID-19 , Databases, Factual , Forecasting , Hospitalization , Models, Biological , Severity of Illness Index , Adult , Aged , Aged, 80 and over , COVID-19/ethnology , COVID-19/mortality , Comorbidity , Ethnicity , Extracorporeal Membrane Oxygenation , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2 , United States , Young Adult
9.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-719257

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
SELECTION OF CITATIONS
SEARCH DETAIL